Functional characterization of WT1 binding sites within the human vitamin D receptor gene promoter.

نویسندگان

  • T H Lee
  • J Pelletier
چکیده

The Wilms' tumor suppressor gene, wt1, encodes a zinc finger transcription factor that can regulate gene expression. It plays an essential role in tumorigenesis, kidney differentiation, and urogenital development. To identify WT1 downstream targets, gene expression profiling was conducted using a cDNA array hybridization approach. We confirm herein that the human vitamin D receptor (VDR), a ligand-activated transcription factor, is a WT1 downstream target. Nuclear run on experiments demonstrated that the effect of WT1 on VDR expression is at the transcriptional level. Transient transfection assays, deletion mutagenesis, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays suggest that, although WT1 is presented with a possibility of three binding sites within the VDR promoter, activation of the human VDR gene appears to occur through a single site. This site differs from a previously identified WT1-responsive site in the murine VDR promoter (Maurer U, Jehan F, Englert C, Hübinger G, Weidmann E, DeLucas HF, and Bergmann L. J Biol Chem 276: 3727-3732, 2001). We also show that the products of a Denys-Drash syndrome allele of wt1 inhibit WT1-mediated transactivation of the human VDR promoter. Our results indicate that the human VDR gene is a downstream target of WT1 and may be regulated differently than its murine counterpart.

منابع مشابه

The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer.

A vitamin D-responsive element (VDRE) locus within the 5' region of the human osteocalcin gene promoter contains a steroid response-like half-site immediately proximal to a consensus site for the AP-1 nuclear oncogene family. In the studies described here, internal mutagenesis of the osteocalcin promoter coupled to functional assays reveal that the interaction of the vitamin D receptor is limit...

متن کامل

In silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter

Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...

متن کامل

Polymorphisms within Exon 9, But Not Intron 8, of the Vitamin D Receptor Gene Are Associated with Asthma

Objective(s) Deregulation of the immune system through allied factors and cytokine responses are thought to be important contributors to the pathogenesis of asthma. Vitamin D3 and its nuclear receptor appear to be factors that maybe involved in regulating immune responses during the progression of asthma. The aim of this study was to investigate the association between polymorphisms in intron ...

متن کامل

Characterization and Functional Assessment of Mouse PPARγ1 Promoter

BACKGROUND Peroxisome Proliferator Activated Receptor gamma (PPARγ), a member of nuclear receptor superfamily, comprises two isoforms in mouse. These two isoforms are encoded by different mRNAs, which are arisen by alternative promoter usage. There are two promoter regions upstream of PPARγ gene. A 3 kb fragment, containing several transcription factor binding sites, acts as PPARγ1 promoter reg...

متن کامل

The Association of Vitamin D Receptor Gene BsmI Polymorphism with Multiple Sclerosis in Iranian Patients

Background & Aims: 1,25-dihydroxyvitamin D3 (1,25 (OH)2 D3), the biologically active form of vitamin D, exerts an immunosuppressive effect through binding to its specific nuclear receptor. The present case-control study was done to examine the possible association of BsmI polymorphism in vitamin D receptor gene (VDR gene) with severity of multiple sclerosis (MS). Methods: 267 Iranian patients w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Physiological genomics

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2001